Topology

B. Math. II

Supplementary Examination

Instructions: All questions carry equal marks.

- 1. Define open maps and closed maps between topological spaces. Show by examples that an open map need be a closed map and a closed map need not be an open map. Also given an example of a map that is both open and closed and an example of a map that is neither open nor closed.
- 2. Define the product topology and the uniform topology on \mathbb{R}^{ω} , the countable product of the real line \mathbb{R} . Consider the subset $S \subset \mathbb{R}^{\omega}$ consisting of all sequences that has only finitely many non-zero terms. Compute its closure in both of these topologies.
- 3. Define connected topological space. Prove that the product of connected spaces is connected.
- 4. Let $f: X \to Y$ be a map between two topological spaces. Assume Y is compact Hausdorff. Then prove that f is continuous if and only if its graph,

$$G_f = \{(x, f(x)) \mid x \in X\}$$

is a closed sunset of $X \times Y$.

- 5. Define second countable space. Prove that any uncountable subset of a second countable space must have uncounably many limit points.
- 6. Define normal topological space. Prove that every compact Hausdorff space is normal. Is the converse true? Justify your answer.